Stratified Oxygen Vacancies Enhance the Performance of Mesoporous TiO2 Electron Transport Layer in Printable Perovskite Solar Cells

Author:

Liu Jiale1,Li Sheng1,Qiu Zexiong1,Liu Yang1,Qiu Cheng1,Zhang Wenhao1,Qi Jianhang1,Chen Kai1,Wang Wei1,Wang Chaoyang1,Cui Zhaozhen1,Su Yaqiong2,Hu Yue1,Mei Anyi1,Han Hongwei1ORCID

Affiliation:

1. Michael Grätzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China

2. School of Chemistry Xi'an Key Laboratory of Sustainable Energy Materials Chemistry State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China

Abstract

AbstractThe low electrical conductivity and the high surface defect density of the TiO2 electron transport layer (ETL) limit the power conversion efficiency (PCE) of corresponding perovskite solar cells (PSCs). Here, the conductivity and defect modulation of the mesoporous TiO2 (mp‐TiO2) ETL via oxygen vacancy (OV) management by the reduction and oxidation treatment are reported. Reduction treatment via reducing agent introduces abundant OVs into the TiO2 nanocrystalline particles on the surface and at the subsurface. The following oxidation treatment via hydrogen peroxide removes the surface OVs while remains the subsurface OVs, resulting in stratified OVs. The stratified OVs improve the conductivity of TiO2 ETL by increasing carrier donors and decrease nonradiative centers by reducing surface defects. Such synergy ensures the capability of mp‐TiO2 as the well‐performed ETL with improved energy level alignment, suppressed interface recombination, enhanced carrier extraction, and transport. As a result, printable hole‐conductor‐free carbon‐based mesoscopic PSCs based on the modulated mp‐TiO2 ETL demonstrate a highest reported PCE of 18.96%.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Science and Technology Department of Hubei Province

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3