Energy Storage Application of Conducting Polymers Featuring Dual Acceptors: Exploring Conjugation and Flexible Chain Length Effects

Author:

Pati Subir K.1ORCID,Patra Dhananjaya1ORCID,Muduli Sunita2ORCID,Mishra Sabyashachi2ORCID,Park Sungjune1ORCID

Affiliation:

1. Department of Nano Convergence Engineering Department of Polymer‐Nano Science and Technology Jeonbuk National University Jeonju 54896 Republic of Korea

2. Department of Chemistry Indian Institute of Technology Kharagpur 721302 India

Abstract

AbstractSolution‐processable conducting polymers (CPs) are a compelling alternative to inorganic counterparts because of their potential for tuning chemical properties and creating flexible organic electronics. CPs, which typically comprise either only an electron donor (D) or its alternative combinations with an electron acceptor (A), exhibit charge transfer behavior between the units, resulting in an electrical conductivity suitable for utilization in electronic devices and for energy storage applications. However, the energy storage behavior of CPs with a sequence of electron acceptors (A–A), has rarely been investigated, despite their promising lower band gap and higher charge carrier mobility. Utilizing the aforesaid concept herein, four CPs featuring benzodithiophenedione (BDD), and diketopyrrolepyrrole (DPP) are synthesized. Among them, the BDDTH‐DPPEH polymer exhibited the highest specific capacitance of 126.5 F g−1 at a current density of 0.5 A g−1 in an organic electrolyte over a wide potential window of −0.6–1.4 V. Notably, the supercapacitor properties of the polymeric electrode materials improved with increasing conjugation length by adding thiophene donor units and shortening the alkyl chain lengths. Furthermore, a symmetric supercapacitor device fabricated using BDDTH‐DPPEH exhibited a high‐power density of 4000 W kg−1 and an energy density of 31.66 Wh kg−1.

Funder

National Research Foundation of Korea

Science and Engineering Research Board

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3