Boosting Spatial Charge Storage in Ion‐Compatible Pores of Carbon Superstructures for Advanced Zinc‐Ion Capacitors

Author:

Liu Pingxuan1,Song Ziyang1ORCID,Miao Ling1,Lv Yaokang2,Gan Lihua1,Liu Mingxian1ORCID

Affiliation:

1. Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China

2. College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China

Abstract

AbstractCapacitive carbon cathodes deliver great potential for zinc‐ion hybrid capacitors (ZHCs) due to their resource abundance and structural versatility. However, the dimension mismatch between the micropores of carbons and hydrated Zn2+ ions often results in unsatisfactory charge storage capability. Here well‐arranged heterodiatomic carbon superstructures are reported with compatible pore dimensions for activating Zn2+ ions, initiated by the supramolecular self‐assembly of 1,3,5‐triazine‐2,4,6‐triamine and cyanuric acid via in‐plane hydrogen‐bonds and out‐of‐plane ππ interactions. Flower‐shaped carbon superstructures expose more surface‐active motifs, continuous charge‐transport routes, and more importantly, well‐developed pores. The primary subnanopores of 0.82 nm are size‐exclusively accessible for solvated Zn2+ ions (0.86 nm) to maximize spatial charge storage, while rich mesopores (1–3 nm) allow for high‐kinetics ion migration with a low activation energy. Such favorable superstructure cathodes contribute to all‐round performance improvement for ZHCs, including high energy density (158 Wh kg−1), fast‐charging ability (50 A g−1), and excellent cyclic lifespan (100 000 cycles). An anion−cation hybrid charge storage mechanism is elucidated for superstructure cathode, which entails alternate physical uptake of Zn2+/CF3SO3 at electroactive pores and bipedal chemical binding of Zn2+ to electronegative carbonyl/pyridine motifs. This work expands the design landscape of carbon superstructures for advanced energy storage.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Shanghai Rising-Star Program

Fundamental Research Funds for the Central Universities

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3