Affiliation:
1. Department of Pharmacy College of Pharmacy Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
2. Kangwon Institute of Inclusive Technology Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
Abstract
AbstractCascade hydroxyl radical generating hydrogel reactor structures including a chemotherapeutic agent are invented for multiple treatment of breast cancer. Glucose oxidase (GOx) and cupric sulfate (Cu) are introduced for transforming accumulated glucose (in cancer cells) to hydroxyl radicals for starvation/chemodynamic therapy. Cu may also suppress cancer cell growth via cuproptosis‐mediated cell death. Berberine hydrochloride (BER) is engaged as a chemotherapeutic agent in the hydrogel reactor for combining with starvation/chemodynamic/cuproptosis therapeutic modalities. Moreover, Cu is participated as a gel crosslinker by coordinating with catechol groups in hyaluronic acid‐dopamine (HD) polymer. Controlling viscoelasticity of hydrogel reactor can extend the retention time following local injection and provide sustained drug release patterns. Low biodegradation rate of designed HD/BER/GOx/Cu hydrogel can reduce dosing frequency in local cancer therapy and avoid invasiveness‐related inconveniences. Especially, it is anticipated that HD/BER/GOx/Cu hydrogel system can be applied for reducing size of breast cancer prior to surgery as well as tumor growth suppression in clinical application.
Funder
National Research Foundation of Korea
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献