Acidity‐Aided Surface Modification Strategy to Enhance In Situ MnO2 Deposition for High Performance Zn‐MnO2 Battery Prototypes

Author:

Panda Manas Ranjan12ORCID,El Meragawi Sally12ORCID,Mirshekarloo Meysam Sharifzadeh1,Chen Wanqing1,Shaibani Mahdokht23,Majumder Mainak12ORCID

Affiliation:

1. Nanoscale Science and Engineering Laboratory (NSEL) Department of Mechanical and Aerospace Engineering Monash University Clayton VIC 3800 Australia

2. ARC Research Hub for Advanced Manufacturing with 2D materials (AM2D) Monash University Clayton VIC 3800 Australia

3. Department of Chemical and Environmental Engineering, RMIT University Melbourne VIC 3001 Australia

Abstract

AbstractZn–MnO2 batteries offer cost‐effective, eco‐friendly, and efficient solutions for large‐scale energy storage applications. However, challenges, like irreversible cathode reactions, prolonged cyclability, and electrolyte stability during high‐voltage operations limit their broader application. This study provides insight into the charge–discharge process through in situ deposition of active β‐MnO2 nanoflakes on a carbon‐based current collector. The study elucidates the effect of pH and electrolyte concentration on chemical conversion reactions with Zn, in particular focus on their impact on the two‐electron MnO2/Mn2+ reaction crucial for high voltage operation. The electrolyte, characterized by being relatively lean in Mn2+ and with a targeted low pH, enables extended cycling. This research achieves greater cycling durability by integrating a carbon‐based cathode current collector with high density of structural defects in combination with cell architectures suitable for large‐scale energy storage. A flooded stack‐type Zn–MnO2 battery prototype employing the optimized electrolyte demonstrates a high discharge voltage (≈2 V) at a substantial discharge current rate of 10 mA cm−2. The battery exhibits an impressive areal capacity of ≈2 mAh cm−2, maintaining ≈100% capacity retention over 400 cycles. This research establishes a promising practical, and cost‐effective cathode‐free design for Zn–MnO2 batteries, that minimizes additional processing and assembly costs.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3