Affiliation:
1. State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian Liaoning 116024 P. R. China
2. College of Chemistry and Chemical Engineering Qingdao University Qingdao Shan Dong 266071 P. R. China
Abstract
AbstractIt is an effective way to reduce atmospheric CO2 via electrochemical CO2 reduction reaction (CO2RR), while the slow oxygen evolution reaction (OER) occurs at the anode with huge energy consumption. Herein, methanol oxidation reaction (MOR) is used to replace OER, coupling CO2RR to achieve co‐production of formate. Through enhancing OCHO* adsorption by oxygen vacancies engineering and synergistic effect by heteroatom doping, Bi/Bi2O3 and Ni─Bi(OH)3 are synthesized for efficient production of formate via simultaneous CO2RR and methanol oxidation reaction (MOR), achieving that the coupling of CO2RR//MOR only required 7.26 kWh gformate−1 power input, much lower than that of CO2RR//OER (13.67 kWh gformate−1). Bi/Bi2O3 exhibits excellent electrocatalytic CO2RR performance, achieving FEformate >80% in a wide potential range from −0.7 to −1.2 V (vs RHE). For MOR, Ni─Bi(OH)3 exhibits efficient MOR catalytic performance with the FEformate >98% in the potential range of 1.35–1.6 V (vs RHE). Not only demonstrates the two‐electrode systems exceptional stability, working continuously for over 250 h under a cell voltage of 3.0 V, but the cathode and anode can maintain a FE of over 80%. DFT calculation results reveal that the oxygen vacancies of Bi/Bi2O3 enhance the adsorption of OCHO* intermediate, and Ni─Bi(OH)3 reduce the energy barrier for the rate determining step, leading to high catalytic activity.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献