Bismuth‐Based Electrocatalysts for Identical Value‐Added Formic Acid Through Coupling CO2 Reduction and Methanol Oxidation

Author:

Hao Shengjie1,Cong Meiyu1,Xu Hanwen1,Ding Xin2ORCID,Gao Yan1

Affiliation:

1. State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian Liaoning 116024 P. R. China

2. College of Chemistry and Chemical Engineering Qingdao University Qingdao Shan Dong 266071 P. R. China

Abstract

AbstractIt is an effective way to reduce atmospheric CO2 via electrochemical CO2 reduction reaction (CO2RR), while the slow oxygen evolution reaction (OER) occurs at the anode with huge energy consumption. Herein, methanol oxidation reaction (MOR) is used to replace OER, coupling CO2RR to achieve co‐production of formate. Through enhancing OCHO* adsorption by oxygen vacancies engineering and synergistic effect by heteroatom doping, Bi/Bi2O3 and Ni─Bi(OH)3 are synthesized for efficient production of formate via simultaneous CO2RR and methanol oxidation reaction (MOR), achieving that the coupling of CO2RR//MOR only required 7.26 kWh gformate−1 power input, much lower than that of CO2RR//OER (13.67 kWh gformate−1). Bi/Bi2O3 exhibits excellent electrocatalytic CO2RR performance, achieving FEformate >80% in a wide potential range from −0.7 to −1.2 V (vs RHE). For MOR, Ni─Bi(OH)3 exhibits efficient MOR catalytic performance with the FEformate >98% in the potential range of 1.35–1.6 V (vs RHE). Not only demonstrates the two‐electrode systems exceptional stability, working continuously for over 250 h under a cell voltage of 3.0 V, but the cathode and anode can maintain a FE of over 80%. DFT calculation results reveal that the oxygen vacancies of Bi/Bi2O3 enhance the adsorption of OCHO* intermediate, and Ni─Bi(OH)3 reduce the energy barrier for the rate determining step, leading to high catalytic activity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3