Self‐Transformation Strategy Toward Vanadium Dioxide Cathode For Advanced Aqueous Zinc Batteries

Author:

Deng Wenjing1,Xu Zhixiao1,Li Ge2ORCID,Wang Xiaolei1ORCID

Affiliation:

1. Department of Chemical and Materials Engineering University of Alberta 9211‐116 Street NW Edmonton Alberta T6G 1H9 Canada

2. Department of Mechanical Engineering University of Alberta 9211‐116 Street NW Edmonton Alberta T6G 1H9 Canada

Abstract

AbstractIn the lithium‐dominated era, rechargeable Zn batteries are emerging as a competitive alternative. However, the sluggish kinetics of ion diffusion and structural destruction of cathode materials have thus far hampered the realization of future large‐scale energy storage. Herein, an in situ self‐transformation approach is reported to electrochemically boost the activity of a high‐temperature, argon‐treated VO2 (AVO) microsphere for effective Zn ion storage. The presynthesized AVO with hierarchical structure and high crystallinity allows efficient electrochemical oxidation and water insertion to induce self‐phase transformation into V2O5·nH2O within the first charging process, which leads to rich active sites and fast electrochemical kinetics. Using AVO cathode, an outstanding discharge capacity of 446 mAh g−1 at 0.1 A g−1, high rate capability of 323 mAh g−1 at 10 A g−1 and excellent cycling stability for 4000 cycles at 20 A g−1 with high capacity retention are demonstrated. Importantly, such zinc‐ion batteries with phase self‐transition can also perform well at high‐loading, sub‐zero temperature, or pouch cell conditions for practical application. This work not only paves a new route to design in situ self‐transformation in energy storage devices, but also broadens the horizons of aqueous zinc‐supplied cathodes

Funder

Canada First Research Excellence Fund

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3