Direct Exfoliation of Nanoribbons from Bulk van der Waals Crystals

Author:

Saunders Ashley P.1,Chen Victoria2,Wang Jierong34,Li Qitong34,Johnson Amalya C.5,McKeown‐Green Amy S.1,Zeng Helen J.1,Mac T. Kien6,Trinh M. Tuan6,Heinz Tony F.34ORCID,Pop Eric23457ORCID,Liu Fang1ORCID

Affiliation:

1. Department of Chemistry 337 Campus Drive Stanford CA 94305 USA

2. Department of Electrical Engineering 476 Lomita Mall, Suite 102 Stanford CA 94305 USA

3. Department of Applied Physics 348 Via Pueblo Mall Stanford CA 94305 USA

4. SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA

5. Department of Materials Science and Engineering Stanford CA 94305 USA

6. Department of Chemistry and Biochemistry Utah State University Logan UT 84322 USA

7. Precourt Institute for Energy Stanford University Stanford, CA 94305 United States

Abstract

AbstractConfinement of monolayers into quasi‐1D atomically thin nanoribbons could lead to novel quantum phenomena beyond those achieved in their bulk and monolayer counterparts. However, current experimental availability of nanoribbon species beyond graphene is limited to bottom‐up synthesis or lithographic patterning. In this study, a versatile and direct approach is introduced to exfoliate bulk van der Waals crystals as nanoribbons. Akin to the Scotch tape exfoliation method for producing monolayers, this technique provides convenient access to a wide range of nanoribbons derived from their corresponding bulk crystals, including MoS2, WS2, MoSe2, WSe2, MoTe2, WTe2, ReS2, and hBN. The nanoribbons are predominantly monolayer, single‐crystalline, parallel‐aligned, flat, and exhibit high aspect ratios. The role of confinement, strain, and edge configuration of these nanoribbons is observed in their electrical, magnetic, and optical properties. This versatile exfoliation technique provides a universal route for producing a variety of nanoribbon materials and supports the study of their fundamental properties and potential applications.

Funder

U.S. Department of Energy

Basic Energy Sciences

Division of Materials Sciences and Engineering

National Science Foundation Graduate Research Fellowship Program

National Science Foundation

Gordon and Betty Moore Foundation

Defense Sciences Office, DARPA

Office of Naval Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3