Modulation of π‐Electron Density in Ultrathin 2D Layers of Graphite Carbon Nitride for Efficient Photocatalytic Hydrogen Production

Author:

Zhang Honghua1,Liu Zhang2,Fang Jianzhang1ORCID,Peng Feng3

Affiliation:

1. School of Environment South China Normal University University Town Guangzhou 510006 P. R. China

2. Division of Environment and Sustainability The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China

3. School of Chemistry and Chemical Engineering Guangzhou University University Town Guangzhou 510006 P. R. China

Abstract

AbstractThe rational design and synthesis of novel semiconductor nano‐/quantum materials have been ambitiously pursued in the field of photocatalysis as the technology is promising and critical for attaining future energy and environmental sustainability. Herein, the integrity of aromatic carbon into graphitic carbon nitride (CN) at the same molecular plane with a few 2D layers is achieved by using modulated precursors of CN, forming carbon regulated ultrathin CN (CUCN) with improved charge transfer kinetics and photocatalytic hydrogen production. The grafted graphite rings adjacent to carbon nitride frameworks induce a significant rearrangement and relocalization of the overall framework, and form conjugated sp2 hybridized interfaces and internal electric fields that drive the separation and directional transfer of photogenerated electrons from CN sheets towards intralayer graphite regions, where the photocatalytic hydrogen evolution reaction occurs extensively, yielding largely increased HER rate of 2231.8 µmol g−1 h−1 by 8.2 times relative to CN, as well as a remarkable apparent quantum yield of 2.93% under monochromatic light at 420 nm. The high physicochemical stability and low synthesis cost of CUCN make it a potential benchmark photocatalyst that can be readily modified via element doping, heterojunction introduction, defect engineering, and so on, to further enhance its HER performance.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3