Surface‐Diluted LiMn6 Superstructure Units Utilizing PO43− Confined Ni‐Doping Sites to Stabilize Li‐Rich Layered Oxides

Author:

Cheng Wenhua1,Liu Qingcui1,Ding Juan1,Wang Xingchao1,Wang Lei2,Wang Jiulin1,Zhang Wenjun3ORCID,Huang Yudai1ORCID

Affiliation:

1. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi Xinjiang 830017 P. R. China

2. Department of Chemical Engineering University of Minnesota‐Duluth Duluth MN 55812 USA

3. Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong 999077 P. R. China

Abstract

AbstractSerious capacity and voltage degradation of Li‐rich layered oxides (LLOs) caused by severe interfacial side reactions (ISR), structural instability, and transition metal (TM) dissolution during charge/discharge need to be urgently resolved. Here, it is proposed for the inaugural time that the confinement effect of PO43− dilutes the LiMn6 superstructure units on the surface of LLOs, while deriving a stable interface with phosphate compounds and spinel species. Combining theoretical calculations, diffraction, spectroscopy, and micrography, an in‐depth investigation of the mechanism is performed. The results show that the modified LLO exhibits excellent anionic/cationic redox reversibility and ultra‐high cycling stability. The capacity retention is increased from 72.4% to 95.4%, and the voltage decay is suppressed from 2.48 to 1.29 mV cycle−1 after 300 cycles at 1 C. It also has stable long cycling performance, with capacity retention improved from 40.2% to 81.9% after 500 cycles at 2 C. The excellent electrochemical performance is attributed to the diluted superstructure units on the surface of LLO inhibiting the TM migration in the intralayer and interlayer. Moreover, the stable interfacial layers alleviate the occurrence of ISR and TM dissolution. Therefore, this strategy can give some important insights into the development of highly stable LLOs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3