High‐Performance 2D Ambipolar MoTe2 Lateral Memristors by Mild Oxidation

Author:

Zhao Bochen1,Xu Longlong1,Peng Ruixuan1,Xin Zeqin1,Shi Run1,Wu Yonghuang1,Wang Bolun1,Chen Jiayuan1,Pan Ting1,Liu Kai1ORCID

Affiliation:

1. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China

Abstract

Abstract2D transition metal dichalcogenides (TMDCs) have been intensively explored in memristors for brain‐inspired computing. Oxidation, which is usually unavoidable and harmful in 2D TMDCs, could also be used to enhance their memristive performances. However, it is still unclear how oxidation affects the resistive switching behaviors of 2D ambipolar TMDCs. In this work, a mild oxidation strategy is developed to greatly enhance the resistive switching ratio of ambipolar 2H‐MoTe2 lateral memristors by more than 10 times. Such an enhancement results from the amplified doping due to O2 and H2O adsorption and the optimization of effective gate voltage distribution by mild oxidation. Moreover, the ambipolarity of 2H‐MoTe2 also enables a change of resistive switching direction, which is uncommon in 2D memristors. Consequently, as an artificial synapse, the MoTe2 device exhibits a large dynamic range (≈200) and a good linearity (1.01) in long‐term potentiation and depression, as well as a high‐accuracy handwritten digit recognition (>96%). This work not only provides a feasible and effective way to enhance the memristive performance of 2D ambipolar materials, but also deepens the understanding of hidden mechanisms for RS behaviors in oxidized 2D materials.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3