Vanadium Hexacyanoferrate Prussian Blue Analogs for Aqueous Proton Storage: Excellent Electrochemical Properties and Mechanism Insights

Author:

Yang Jun1ORCID,Hou Wenxiu1,Ye Lingqian1,Hou Guoyu2,Yan Chao1ORCID,Zhang Yu2ORCID

Affiliation:

1. School of Material Science and Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China

2. School of Mechanical and Power Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China

Abstract

AbstractThe significant attraction toward aqueous proton batteries (APBs) is attributable to their expedited kinetics, elevated safety profile, and economical feasibility. Nevertheless, their practical implement is significantly blocked by the unsatisfactory energy density due to the limited cathode materials. Herein, vanadium hexacyanoferrate Prussian blue analog (VOHCF) is introduced as a potentially favorable cathode material for APBs. The findings demonstrate that this VOHCF electrode exhibits a notable reversible capacity of 102.7 mAh g−1 and exceptional cycling stability, with 95.4% capacity retention over 10 000 cycles at 10 A g−1. It is noteworthy that this is the detailed instance of VOHCF being proposed as a cathode for APBs. Combining the in situ characterization techniques and theoretical simulations, the origins of excellent proton storage performance are revealed as the multiple redox mechanisms with double active centers of ─C≡N group and V═O bond in VOHCF as well as the robust structure stability. A proton full cell with excellent performance is further achieved by coupling the VOHCF cathode and diquinoxalino[2,3‐a:2′,3′‐c] phenazine (HATN) anode, demonstrating the great potential of VOHCF in practical applications. This work could provide fundamental understanding to the development of feasible cathode materials for proton storage device.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3