Ascorbic Acid Induced the Improved Oxygen Vacancy Defects of Bi4O5Br2 and Its Application on Photoelectrochemical Detection of DNA Demethylase MBD2 with Improved Detection Sensitivity

Author:

Cao LuLu1,Zhou Yunlei1,Gao Lanlan1,Yin Huanshun1ORCID,Zhang Miao1,Zhang Haowei1,Ju Peng2,Dou Kunpeng3,Ai Shiyun1

Affiliation:

1. College of Chemistry and Material Science Key Laboratory of Low‐Carbon and Green Agriculture Chemistry in Universities of Shandong Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province Shandong Agricultural University Tai'an 271018 P. R. China

2. Key Laboratory of Marine Eco‐Environmental Science and Technology Marine Bioresource and Environment Research Center First Institute of Oceanography Ministry of Natural Resources Qingdao 266061 P. R. China

3. College of Information Science and Engineering Ocean University of China Qingdao 266061 P. R. China

Abstract

AbstractOxygen vacancy defects (OVs) are one of the main strategies for nanomaterials modification to improve the photoactivity, but current methods for fabricating OVs are usually complicated and harsh. It is important to develop simple, rapid, safe, and mild methods to fabricate OVs. By studying the effects of different weak reducing agents, the concentration of the reducing agent and the reaction time on fabrication of OVs, it is found that L‐ascorbic acid (AA) gently and rapidly induces the increase of OVs in Bi4O5Br2 at room temperature. The increased OVs not only improve the adsorption of visible light, but also enhance the photocurrent response. Based on this, the preparation of OVs in Bi4O5Br2 is employed to the development of a photoelectrochemical biosensor for the detection of DNA demethylase of methyl‐CpG binding domain protein 2 (MBD2). The biosensor shows a wide linear range of 0.1–400 ng mL−1 and a detection limit as low as 0.03 ng mL−1 (3σ). In addition, the effect of plasticizers on MBD2 activity is evaluated using this sensor. This work not only provides a novel method to prepare OVs in bismuth rich materials, but also explores a new novel evaluation tool for studying the ecotoxicological effects of contaminants.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3