Developing Superior Hydrophobic 3D Hierarchical Electrocatalysts Embedding Abundant Catalytic Species for High Power Density Zn–Air Battery

Author:

Zhao Dafu12,Zhang Liping3,Zuo Siyu12,Lv Xiaowei12,Zhao Meiyun12,Sun Panpan12ORCID,Sun Xiaohua12ORCID,Liu Tianbiao Leo3ORCID

Affiliation:

1. College of Materials and Chemical Engineering College of Mechanical and Power Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang 443002 China

2. Hubei Three Gorges Laboratory Yichang Hubei 443007 China

3. Department of Chemistry and Biochemistry Utah State University Logan UT 84322 USA

Abstract

AbstractIt is essential but still challenging to design and construct inexpensive, highly active bifunctional oxygen electrocatalysts for the development of high power density zinc–air batteries (ZABs). Herein, a CoFe‐S@3D‐S‐NCNT electrocatalyst with a 3D hierarchical structure of carbon nanotubes growing on leaf‐like carbon microplates is designed and prepared through chemical vapour deposition pyrolysis of CoFe‐MOF and subsequent hydrothermal sulfurization. Its 3D hierarchical structure shows excellent hydrophobicity, which facilitates the diffusion of oxygen and thus accelerates the oxygen reduction reaction (ORR) kinetic process. Alloying and sulfurization strategies obviously enrich the catalytic species in the catalyst, including cobalt or cobalt ferroalloy sulfides, their heterojunction, core–shell structure, and S, N‐doped carbon, which simultaneously improve the ORR/OER catalytic activity with a small potential gap (ΔE = 0.71 V). Benefiting from these characteristics, the corresponding liquid ZABs show high peak power density (223 mW cm−2), superior specific capacity (815 mA h gZn−1), and excellent stability at 5 mA cm−2 for ≈900 h. The quasi‐solid‐state ZABs also exhibit a very high peak power density of 490 mW cm−2 and an excellent voltage round‐trip efficiency of more than 64%. This work highlights that simultaneous composition optimization and microstructure design of catalysts can effectively improve the performance of ZABs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Higher Education Discipline Innovation Project

National Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3