Interface Density Engineering on Heterogeneous Molybdenum Dichalcogenides Enabling Highly Efficient Hydrogen Evolution Catalysis and Sodium Ion Storage

Author:

Huang Senchuan12,Cao Yangfei12,Yao Fen12,Zhang Daliang3,Yang Jing12,Ye Siyang4,Yao Deqiang5,Liu Yan12,Li Jiade12,Lei Danni4,Wang Xuxu12,Huang Haitao6,Wu Mingmei12ORCID

Affiliation:

1. School of Chemistry Sun Yat‐sen University Guangzhou 510006 P. R. China

2. School of Chemical Engineering and Technology Sun Yat‐sen University Zhuhai 519082 P. R. China

3. Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering Chongqing University Chongqing 400044 P. R. China

4. State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China

5. State Key Laboratory of Oncogenes and Related Genes Ren Ji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 P. R. China

6. Department of Applied Physics and Research Institute for Smart Energy The Hong Kong Polytechnic University Hong Kong SAR 999077 P. R. China

Abstract

AbstractConstructing active heterointerfaces is powerful to enhance the electrochemical performances of transition metal dichalcogenides, but the interface density regulation remains a huge challenge. Herein, MoO2/MoS2 heterogeneous nanorods are encapsulated in nitrogen and sulfur co‐doped carbon matrix (MoO2/MoS2@NSC) by controllable sulfidation. MoO2 and MoS2 are coupled intimately at atomic level, forming the MoO2/MoS2 heterointerfaces with different distribution density. Strong electronic interactions are triggered at these MoO2/MoS2 heterointerfaces for enhancing electron transfer. In alkaline media, the optimal material exhibits outstanding hydrogen evolution reaction (HER) performances that significantly surpass carbon‐covered MoS2 nanorods counterpart (η10: 156 mV vs 232 mV) and most of the MoS2‐based heterostructures reported recently. First‐principles calculation deciphers that MoO2/MoS2 heterointerfaces greatly promote water dissociation and hydrogen atom adsorption via the O–Mo–S electronic bridges during HER process. Moreover, benefited from the high pseudocapacitance contribution, abundant “ion reservoir”‐like channels, and low Na+ diffusion barrier appended by high‐density MoO2/MoS2 heterointerfaces, the material delivers high specific capacity of 888 mAh g−1, remarkable rate capability and cycling stability of 390 cycles at 0.1 A g−1 as the anode of sodium ion battery. This work will undoubtedly light the way of interface density engineering for high‐performance electrochemical energy conversion and storage systems.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Hong Kong Polytechnic University

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3