Guard Cell‐Inspired Ion Channels: Harnessing the Photomechanical Effect via Supramolecular Assembly of Cross‐Linked Azobenzene/Polymers

Author:

Chen Yi‐Fan1,Hsieh Chia‐Ling1,Lin Pei‐Yu2,Liu Yu‐Chun1,Lee Min‐Jie1,Lee Lin‐Ruei1,Zheng Sheng1,Lin Yu‐Liang1,Huang Yen‐Lin2,Chen Jiun‐Tai13ORCID

Affiliation:

1. Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan

2. Department of Materials Science and Engineering National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan

3. Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan

Abstract

AbstractStimuli‐responsive ion nanochannels have attracted considerable attention in various fields because of their remote controllability of ionic transportation. For photoresponsive ion nanochannels, however, achieving precise regulation of ion conductivity is still challenging, primarily due to the difficulty of programmable structural changes in confined environments. Moreover, the relationship between noncontact photo‐stimulation in nanoscale and light‐induced ion conductivity has not been well understood. In this work, a versatile design for fabricating guard cell‐inspired photoswitchable ion channels is presented by infiltrating azobenzene‐cross‐linked polymer (AAZO‐PDAC) into nanoporous anodic aluminum oxide (AAO) membranes. The azobenzene‐cross‐linked polymer is formed by azobenzene chromophore (AAZO)‐cross‐linked poly(diallyldimethylammonium chloride) (PDAC) with electrostatic interactions. Under UV irradiation, the trans‐AAZO isomerizes to the cis‐AAZO, causing the volume compression of the polymer network, whereas, in darkness, the cis‐AAZO reverts to the trans‐AAZO, leading to the recovery of the structure. Consequently, the resultant nanopore sizes can be manipulated by the photomechanical effect of the AAZO‐PDAC polymers. By adding ionic liquids, the ion conductivity of the light‐driven ion nanochannels can be controlled with good repeatability and fast responses (within seconds) in multiple cycles. The ion channels have promising potential in the applications of biomimetic materials, sensors, and biomedical sciences.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3