Spontaneous Internal Electric Field in Heterojunction Boosts Bifunctional Oxygen Electrocatalysts for Zinc–Air Batteries: Theory, Experiment, and Application

Author:

Yao Yong1,Wu Jiexing1,Feng Qiaoxia1,Zeng Kui2,Wan Jing3,Zhang Jincan3,Mao Boyang3,Hu Kui4,Chen Liming4,Zhang Hao5,Gong Yi6,Yang Kai6,Zhou Haihui1,Huang Zhongyuan1,Li Huanxin123ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China

2. Department of Chemistry Physical & Theoretical Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QZ UK

3. Department of Engineering University of Cambridge 9 JJ Thomson Avenue Cambridge CB3 0FA UK

4. Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK

5. Chemistry Research Laboratory Department of Chemistry University of Oxford Oxford OX1 3TA UK

6. Advanced Technology Institute University of Surrey Guildford Surrey GU2 7XH UK

Abstract

AbstractHeterojunctions are a promising class of materials for high‐efficiency bifunctional oxygen electrocatalysts in both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the conventional theories fail to explain why many catalysts behave differently in ORR and OER, despite a reversible path (*O2*OOH⇋*O⇋*OH). This study proposes the electron‐/hole‐rich catalytic center theory (e/h‐CCT) to supplement the existing theories, it suggests that the Fermi level of catalysts determines the direction of electron transfer, which affects the direction of the oxidation/reduction reaction, and the density of states (DOS) near the Fermi level determines the accessibility for injecting electrons and holes. Additionally, heterojunctions with different Fermi levels form electron‐/hole‐rich catalytic centers near the Fermi levels to promote ORR/OER, respectively. To verify the universality of the e/h‐CCT theory, this study reveals the randomly synthesized heterostructural Fe3N‐FeN0.0324 (FexN@PC with DFT calculations and electrochemical tests. The results show that the heterostructural F3N‐FeN0.0324 facilitates the catalytic activities for ORR and OER simultaneously by forming an internal electron‐/hole‐rich interface. The rechargeable ZABs with FexN@PC cathode display a high open circuit potential of 1.504 V, high power density of 223.67 mW cm−2, high specific capacity of 766.20 mAh g−1 at 5 mA cm−2, and excellent stability for over 300 h.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3