Affiliation:
1. Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering Fuzhou University Fuzhou 350108 China
2. College of Chemistry Fuzhou University Fuzhou 350108 China
Abstract
AbstractDoping is a recognized method for enhancing catalytic performance. The introduction of strains is a common consequence of doping, although it is often overlooked. Differentiating the impact of doping and strain on catalytic performance poses a significant challenge. In this study, Cu‐doped Bi catalysts with substantial tensile strain are synthesized. The synergistic effects of doping and strain in bismuth result in a remarkable CO2RR performance. Under optimized conditions, Cu1/6‐Bi demonstrates exceptional formate Faradaic efficiency (>95%) and maintains over 90% across a wide potential window of 900 mV. Furthermore, it delivers an industrial‐relevant partial current density of −317 mA cm−2 at −1.2 VRHE in a flow cell, while maintaining its selectivity. Additionally, it exhibits exceptional long‐term stability, surpassing 120 h at −200 mA cm−2. Through experimental and theoretical mechanistic investigations, it has been determined that the introduction of tensile strain facilitates the adsorption of *CO2, thereby enhancing the reaction kinetics. Moreover, the presence of Cu dopants and tensile strain further diminishes the energy barrier for the formation of *OCHO intermediate. This study not only offers valuable insights for the development of effective catalysts for CO2RR through doping, but also establishes correlations between doping, lattice strains, and catalytic properties of bismuth catalysts.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献