Shaping Graphene Superconductivity with Nanometer Precision

Author:

Cortés‐del Río Eva12,Trivini Stefano.3,Pascual José I.34,Cherkez Vladimir56,Mallet Pierre56,Veuillen Jean‐Yves56,Cuevas Juan. C.278,Brihuega Iván128ORCID

Affiliation:

1. Departamento Física de la Materia Condensada Universidad Autónoma de Madrid Madrid E‐28049 Spain

2. Condensed Matter Physics Center (IFIMAC) Universidad Autónoma de Madrid Madrid E‐28049 Spain

3. CIC nanoGUNE‐BRTA Donostia‐San Sebastián 20018 Spain

4. Ikerbasque Basque Foundation for Science Bilbao 48013 Spain

5. Université Grenoble Alpes, CNRS, Institut Néel Grenoble F‐38400 France

6. CNRS, Institut Neel Grenoble F‐38042 France

7. Departamento Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Madrid E‐28049 Spain

8. Instituto Nicolás Cabrera Universidad Autónoma de Madrid Madrid E‐28049 Spain

Abstract

AbstractGraphene holds great potential for superconductivity due to its pure 2D nature, the ability to tune its carrier density through electrostatic gating, and its unique, relativistic‐like electronic properties. At present, still far from controlling and understanding graphene superconductivity, mainly because the selective introduction of superconducting properties to graphene is experimentally very challenging. Here, a method is developed that enables shaping at will graphene superconductivity through a precise control of graphene‐superconductor junctions. The method combines the proximity effect with scanning tunnelling microscope (STM) manipulation capabilities. Pb nano‐islands are first grown that locally induce superconductivity in graphene. Using a STM, Pb nano‐islands can be selectively displaced, over different types of graphene surfaces, with nanometre scale precision, in any direction, over distances of hundreds of nanometres. This opens an exciting playground where a large number of predefined graphene‐superconductor hybrid structures can be investigated with atomic scale precision. To illustrate the potential, a series of experiments are performed, rationalized by the quasi‐classical theory of superconductivity, going from the fundamental understanding of superconductor‐graphene‐superconductor heterostructures to the construction of superconductor nanocorrals, further used as “portable” experimental probes of local magnetic moments in graphene.

Funder

Ministerio de Ciencia e Innovación

H2020 European Research Council

HORIZON EUROPE Excellent Science

Ministerio de Ciencia, Innovación y Universidades

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3