Ternary Heteroatomic Doping Induced Microenvironment Engineering of Low Fe‐N4‐Loaded Carbon Nanofibers for Bifunctional Oxygen Electrocatalysis

Author:

Li Han12ORCID,Zhao Haoyue2,Yan Guilong3ORCID,Huang Gongyue1,Ge Can1,Forsyth Maria1,Howlett Patrick C.4,Wang Xungai1,Fang Jian2

Affiliation:

1. JC STEM lab of Sustainable Fibers and Textiles School of Fashion and Textiles The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong 999077 China

2. College of Textile and Clothing Engineering Soochow University Suzhou JiangSu 215123 China

3. School of New Energy and Materials Southwest Petroleum University Chengdu 610500 China

4. ARC Centre of Excellence for Electromaterials Science (ACES) Institute for Frontier Materials Deakin University Geelong VIC 3200 Australia

Abstract

AbstractFabricating highly efficient and long‐life redox bifunctional electrocatalysts is vital for oxygen‐related renewable energy devices. To boost the bifunctional catalytic activity of Fe‐N‐C single‐atom catalysts, it is imperative to fine‐tune the coordination microenvironment of the Fe sites to optimize the adsorption/desorption energies of intermediates during oxygen reduction/evolution reactions (ORR/OER) and simultaneously avoid the aggregation of atomically dispersed metal sites. Herein, a strategy is developed for fabricating a free‐standing electrocatalyst with atomically dispersed Fe sites (≈0.89 wt.%) supported on N, F, and S ternary‐doped hollow carbon nanofibers (FeN4‐NFS‐CNF). Both experimental and theoretical findings suggest that the incorporation of ternary heteroatoms modifies the charge distribution of Fe active centers and enhances defect density, thereby optimizing the bifunctional catalytic activities. The efficient regulation isolated Fe centers come from the dual confinement of zeolitic imidazole framework‐8 (ZIF‐8) and polymerized ionic liquid (PIL), while the precise formation of distinct hierarchical three‐dimensional porous structure maximizes the exposure of low‐doping Fe active sites and enriched heteroatoms. FeN4‐NFS‐CNF achieves remarkable electrocatalytic activity with a high ORR half‐wave potential (0.90 V) and a low OER overpotential (270 mV) in alkaline electrolyte, revealing the benefit of optimizing the microenvironment of low‐doping iron single atoms in directing bifunctional catalytic activity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3