Affiliation:
1. Institute of Photoelectronic Thin Film Devices and Technology and Tianjin Key Laboratory of Thin Film Devices and Technology Nankai University Tianjin 300350 P. R. China
2. Shenzhen Key Laboratory of Advanced Thin Films and Applications Shenzhen University Shenzhen 518060 P. R. China
3. Beijing National Laboratory for Condensed Matter Physics Renewable Energy Laboratory Institute of Physics Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
Abstract
AbstractIncreasing the fill factor (FF) and the open‐circuit voltage (VOC) simultaneously together with non‐decreased short‐circuit current density (JSC) are a challenge for highly efficient Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. Aimed at such target in CZTSSe solar cells, a synergistic strategy to tailor the recombination in the bulk and at the heterojunction interface has been developed, consisting of atomic‐layer deposited aluminum oxide (ALD‐Al2O3) and (NH4)2S treatment. With this strategy, deep‐level CuZn defects are converted into shallower VCu defects and improved crystallinity, while the surface of the absorber is optimized by removing Zn‐ and Sn‐related impurities and incorporating S. Consequently, the defects responsible for recombination in the bulk and at the heterojunction interface are effectively passivated, thereby prolonging the minority carrier lifetime and increasing the depletion region width, which promote carrier collection and reduce charge loss. As a consequence, the VOC deficit decreases from 0.607 to 0.547 V, and the average FF increases from 64.2% to 69.7%, especially, JSC does not decrease. Thus, the CZTSSe solar cell with the remarkable efficiency of 13.0% is fabricated. This study highlights the increased FF together with VOC simultaneously to promote the efficiency of CZTSSe solar cells, which could also be applied to other photoelectronic devices.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献