Effective Suppressing Phase Segregation of Mixed‐Halide Perovskite by Glassy Metal‐Organic Frameworks

Author:

Ghasemi Mehri1,Li Xuemei2,Tang Cheng3,Li Qi4,Lu Junlin4,Du Aijun3,Lee Jaeho2,Appadoo Dominique5,Tizei Luiz H. G.6,Pham Sang T.7,Wang Lianzhou28,Collins Sean M.7,Hou Jingwei2ORCID,Jia Baohua1,Wen Xiaoming1

Affiliation:

1. School of Science RMIT University Melbourne VIC 3000 Australia

2. School of Chemical Engineering The University of Queensland St. Lucia QLD 4072 Australia

3. School of Chemistry and Physics Centre for Materials Science Queensland University of Technology 2 George St Brisbane City, QLD 4001 Australia

4. Centre for Translational Atomaterials Swinburne University of Technology Hawthorn VIC 3122 Australia

5. Australian Synchrotron 800 Blackburn Rd Clayton VIC 3168 Australia

6. Université Paris‐Saclay, CNRS Laboratoire de Physique des Solides 91405 Orsay France

7. Bragg Centre for Materials Research School of Chemical and Process Engineering and School of Chemistry University of Leeds LS2 9JT Leeds UK

8. Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia

Abstract

AbstractLead mixed‐halide perovskites offer tunable bandgaps for optoelectronic applications, but illumination‐induced phase segregation can quickly lead to changes in their crystal structure, bandgaps, and optoelectronic properties, especially for the Br–I mixed system because CsPbI3 tends to form a non‐perovskite phase under ambient conditions. These behaviors can impact their performance in practical applications. By embedding such mixed‐halide perovskites in a glassy metal‐organic framework, a family of stable nanocomposites with tunable emission is created. Combining cathodoluminescence with elemental mapping under a transmission electron microscope, this research identifies a direct relationship between the halide composition and emission energy at the nanoscale. The composite effectively inhibits halide ion migration, and consequently, phase segregation even under high‐energy illumination. The detailed mechanism, studied using a combination of spectroscopic characterizations and theoretical modeling, shows that the interfacial binding, instead of the nanoconfinement effect, is the main contributor to the inhibition of phase segregation. These findings pave the way to suppress the phase segregation in mixed‐halide perovskites toward stable and high‐performance optoelectronics.

Funder

Australian Research Council

University of Queensland

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3