In Situ Electrochemical Rapid Induction of Highly Active γ‐NiOOH Species for Industrial Anion Exchange Membrane Water Electrolyzer

Author:

Wang Fu‐Li1,Tan Jin‐Long1,Jin Zheng‐Yang1,Gu Chao‐Yue1,Lv Qian‐Xi1,Dong Yi‐Wen1,Lv Ren‐Qing1,Dong Bin1ORCID,Chai Yong‐Ming1

Affiliation:

1. State Key Laboratory of Heavy Oil Processing College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 China

Abstract

AbstractLimited by the strong oxidation environment and sluggish reconstruction process in oxygen evolution reaction (OER), designing rapid self‐reconstruction with high activity and stability electrocatalysts is crucial to promoting anion exchange membrane (AEM) water electrolyzer. Herein, trace Fe/S‐modified Ni oxyhydroxide (Fe/S‐NiOOH/NF) nanowires are constructed via a simple in situ electrochemical oxidation strategy based on precipitation‐dissolution equilibrium. In situ characterization techniques reveal that the successful introduction of Fe and S leads to lattice disorder and boosts favorable hydroxyl capture, accelerating the formation of highly active γ‐NiOOH. The Density Functional Theory (DFT) calculations have also verified that the incorporation of Fe and S optimizes the electrons redistribution and the d‐band center, decreasing the energy barrier of the rate‐determining step (*O→*OOH). Benefited from the unique electronic structure and intermediate adsorption, the Fe/S‐NiOOH/NF catalyst only requires the overpotential of 345 mV to reach the industrial current density of 1000 mA cm−2 for 120 h. Meanwhile, assembled AEM water electrolyzer (Fe/S‐NiOOH//Pt/C‐60 °C) can deliver 1000 mA cm−2 at a cell voltage of 2.24 V, operating at the average energy efficiency of 71% for 100 h. In summary, this work presents a rapid self‐reconstruction strategy for high‐performance AEM electrocatalysts for future hydrogen economy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3