In Situ Synthesis of Rare‐Earth Hybridized Functional Core‐Shell Architectures from Microporous Salt Templates and Capacitance‐Adsorption Correlation Mechanisms

Author:

Zheng Zetao1,Guo Ming1ORCID

Affiliation:

1. Department of Chemistry College of Chemistry and Materials Engineering Zhejiang Agriculture & Forestry University Hangzhou Zhejiang 311300 China

Abstract

AbstractBiochar Porous Carbon (BPC) has become a research hotspot in the fields of energy storage, conversion, catalysis, adsorption, and separation engineering. However, the key problem of pore structure liable to collapse has not yet been addressed effectively. Here, an innovative salt ionic coordination modulation technique is reported to synthesize a new core‐shell structure of BPC (Dual‐doped porous carbonaceous materials, RHPC3@LaYO3) by the asymmetric load of the f orbital ion, which prevents pore structural collapse. The result shows that the novel asymmetric supercapacitors (ASCs) with an excellent energy density (193.11 Wh·kg−1) and capacitance (267.14 F·g−1) by assembling the prepared porous BPC carrier and RHPC3@LaYO3, which surpass the typical supercapacitor. In order to elucidate the association between adsorption and capacitance, the adsorption coexistence equation (MACE) is constructed with the aim of providing a comprehensive explanation for the mechanism of single‐multilayer adsorption. Furthermore, a specific linkage mechanism is discovered using adsorption/ desorption properties to validate the pros/cons of capacitive properties. These results demonstrate the potential of renewable biomass materials as ASCs, which can provide new ideas for the construction of an evaluation approach for the performance of future efficient multi‐reaction energy storage devices.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3