Molecular Dynamics Simulations of High‐Performance, Dissipationless Desalination across Self‐Assembled Amyloid Beta Nanotubes

Author:

Liu Yu‐Cheng1,Yang Dah‐Yen234,Deng Jin‐Pei3,Sheu Sheh‐Yi15ORCID

Affiliation:

1. Institute of Biomedical Informatics National Yang Ming Chiao Tung University Taipei 112 Taiwan

2. Institute of Atomic and Molecular Sciences Academia Sinica Taipei 106 Taiwan

3. Department of Chemistry Tamkang University New Taipei City 251 Taiwan

4. Department of Chemistry Fu Jen Catholic University New Taipei City 242 Taiwan

5. Department of Life Sciences and Institute of Genome Sciences National Yang Ming Chiao Tung University Taipei 112 Taiwan

Abstract

AbstractClimate change is causing droughts and water shortages. Membrane desalination is one of the most widely employed conventional methods of creating a source of clean water, but is a very energy‐intensive process. Membrane separation requires high salt selectivity across nano‐channels, yet traditional techniques remain inefficient in this regard. Herein, a bioinspired, chemically robust, amyloid–fibril‐based nanotube is designed, exhibiting water permeability and salt rejection properties capable of providing highly efficient desalination. Molecular dynamics simulations show that nano‐dewetting facilitates the unidirectional motion of water molecules on the surface of amyloid beta (Aβ) sheets owing to the ratchet structure of the underlying potential surface and the broken detailed balance. The water inside the self‐assembled Aβ nanotube (ABNT) overflows, while the passage of salts can be blocked using amphiphilic peptides. The designed nanofilter ABNT shows 100% desalination efficiency with perfect NaCl rejection. The production of ≈2.5 tons of pure water per day without any energy input, which corresponds to a water flux up to 200 times higher than those of existing commercial methods, is assessed by this simulation method. These results provide a detailed fundamental understanding of potential high‐performance nanotechnologies for water treatment.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3