Tunable Radiative Cooling by Mechanochromic Electrospun Micro‐Nanofiber Matrix

Author:

Pyun Kyung Rok1,Jeong Seongmin1,Yoo Myung Jin1,Choi Seok Hwan1,Baik Gunwoo2,Lee Minjae13,Song Jaeman2,Ko Seung Hwan14

Affiliation:

1. Department of Mechanical Engineering Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea

2. Department of Mechanical Engineering Kyung Hee University 1732 Deogyeong‐daero, Giheung gu Yongin‐si Gyeonggi‐do 17104 Republic of Korea

3. Electronic Device Research Team Hyundai Motor Group 37 Cheoldobangmulgwan‐ro Uiwang‐si Gyeonggi‐do 16082 Republic of Korea

4. Institute of Engineering Research Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea

Abstract

AbstractRadiative thermoregulation has been regarded as an energy‐efficient method for thermal management. In this study, the development of a mechanoresponsive polydimethylsiloxane (PDMS) micro‐nanofiber matrix capable of both sub‐ambient radiative cooling and solar heating is presented, achieved through a core‐shell electrospinning technique. The electrospun PDMS micro‐nanofibers, with diameters comparable to the solar wavelengths, exhibit excellent solar reflectivity (≈93%) while preserving its pristine high infrared (IR) emissivity. As a result, the electrospun PDMS radiative cooler (EPRC) successfully demonstrated sub‐ambient radiative cooling performance (≈3.8°C) during the daytime. Furthermore, the exceptional resilient property of PDMS facilitated the reversible alteration of the structural morphology created by the fiber‐based matrix under mechanical force, resulting in the modulation of solar reflectivity (≈80%). The precise modulation of solar reflectivity enabled reversibly switchable multi‐step radiative thermoregulation, offering enhanced flexibility in addressing varying thermal environments even in maintaining the desired temperature. The findings of this work offer a promising approach toward dynamic radiative thermoregulation, which holds significant potential for addressing global climate change concerns and energy shortage.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3