Affiliation:
1. Zhang Dayu School of Chemistry Dalian University of Technology Dalian Liaoning 116024 P. R. China
Abstract
AbstractPhotocarrier separation and migration to the surface are vital for photocatalysis. However, the mobility of the surface holes and electrons makes them easily recombine before participating in the surface reaction, which constrains the photocatalytic efficiency. Targeting this problem, herein, it is reported that chloride adsorbates enhance the photocarrier separation and promote the bio‐syngas evolution. Chloride, adsorbed on the surface of CdS (CdS‐Cl), can increase the internal electric field and enhance the charge separation and migration to the surface. Moreover, compared with pristine CdS where holes are mobile and distributed on all the surface atoms, CdSCl can reduce the hole mobility via delocalization on specific sites and thus prolong the photocarrier lifetime. This contributes to an 11‐fold enhanced photocatalytic syngas evolution from glycerol. This study reports the pivotal effect of surface adsorbates on photocarrier separation and offers a convenient strategy to prohibit surface holes and electrons recombination for solar energy utilization.Chloride absorbates on CdS contribute to enhanced photocatalytic syngas evolution from glycerol by increasing the internal electric field.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Liaoning Province
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献