Affiliation:
1. Biomaterials Research Center School of Biomedical Engineering Southern Medical University Guangzhou 510515 China
2. Institute of Biophysics Chinese Academy of Sciences Beijing 101408 China
3. Division of Laboratory Medicine Zhujiang Hospital Southern Medical University Guangzhou 510282 China
Abstract
AbstractAchieving ultrabright fluorogens is a key issue for fluorescence‐guided surgery (FGS). Fluorogens with aggregation‐induced emission (AIEgens) are potential agents for FGS on the benefit of the bright fluorescence in physiological conditions. Herein, the fluorescence brightness of AIEgen is further improved by preparing the nanoparticle using a polystyrene‐based matrix and utilizing it for tumor FGS with a high signal‐to‐background ratio. After encapsulating AIEgen into polystyrene‐poly (ethylene glycol) (PS‐PEG), the fluorescence intensity of the prepared AIE@PS‐PEG nanoparticles is multiple times that of nanoparticles in 1, 2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine‐poly (ethylene glycol) (DSPE‐PEG), a commonly used polymer matrix for nanoparticle preparation. Molecular dynamics simulations suggest that higher free energy is required for the outer rings of AIEgen to rotate in polystyrene than in the DSPE, indicating that the benzene rings in polystyrene can restrict the intramolecular motions of AIEgen better than the alkyl chain in DSPE‐PEG. Fluorescence correlation microscopy detections suggest that the triplet excited state of AIEgens is less in PS‐PEG than in DSPE‐PEG. The restricted intramolecular motions and suppressed triplet excited state result in ultrabright AIE@PS‐PEG nanoparticles, which are more conducive to illuminating tumor tissues in the intestine for FGS. The illumination of metastatic tumors in lungs by AIE@PS‐PEG nanoparticles is also tried.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献