Affiliation:
1. School of Materials and Chemical Engineering Institute of Science and Technology for New Energy Xi'an Technological University Xi'an 710021 China
2. Institute of Science and Technology for New Energy Xi'an Technological University Xi'an 710021 China
3. Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 China
4. College of Physics Donghua University Shanghai 201620 China
5. Zhejiang Laboratory Hangzhou 311100 China
Abstract
AbstractHeterointerface engineering is presently considered a valuable strategy for enhancing the microwave absorption (MA) properties of materials via compositional modification and structural design. In this study, a sulfur‐doped multi‐interfacial composite (Fe7S8/NiS@C) coated with NiFe‐layered double hydroxides (LDHs) is successfully prepared using a hydrothermal method and post‐high‐temperature vulcanization. When assembled into twisted surfaces, the NiFe‐LDH nanosheets exhibit porous morphologies, improving impedance matching, and microwave scattering. Sulfur doping in composites generates heterointerfaces, numerous sulfur vacancies, and lattice defects, which facilitate the polarization process to enhance MA. Owing to the controllable heterointerface design, the unique porous structure induced multiple heterointerfaces, numerous vacancies, and defects, endowing the Fe7S8/NiS@C composite with an enhanced MA capability. In particular, the minimum reflection loss (RLmin) value reached −58.1 dB at 15.8 GHz at a thickness of 2.1 mm, and a broad effective absorption bandwidth (EAB) value of 7.3 GHz is achieved at 2.5 mm. Therefore, the Fe7S8/NiS@C composite exhibits remarkable potential as a high‐efficiency MA material owing to the synergistic effects of the polarization processes, multiple scatterings, porous structures, and impedance matching.
Funder
National Natural Science Foundation of China
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献