3D Dense Encapsulated Architecture of 2D Bi Nanosheets Enabling Potassium‐Ion Storage with Superior Volumetric and Areal Capacities

Author:

Wang Bingchun1,Shi Liwen1,Zhou Yiru1,Wang Xinying1,Liu Xi1,Shen Dijun1,Yang Qian1,Xiao Shengfu1,Zhang Jiacheng1,Li Yunyong1ORCID

Affiliation:

1. School of Materials and Energy Guangdong University of Technology No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 China

Abstract

Abstract2D alloy‐based anodes show promise in potassium‐ion batteries (PIBs). Nevertheless, their low tap density and huge volume expansion cause insufficient volumetric capacity and cycling stability. Herein, a 3D highly dense encapsulated architecture of 2D‐Bi nanosheets (HD‐Bi@G) with conducive elastic networks and 3D compact encapsulation structure of 2D nano‐sheets are developed. As expected, HD‐Bi@G anode exhibits a considerable volumetric capacity of 1032.2 mAh cm−3, stable long‐life span with 75% retention after 2000 cycles, superior rate capability of 271.0 mAh g−1 at 104 C, and high areal capacity of 7.94 mAh cm−2 (loading: 24.2 mg cm−2) in PIBs. The superior volumetric and areal performance mechanisms are revealed through systematic kinetic investigations, ex situ characterization techniques, and theorical calculation. The 3D high‐conductivity elastic network with dense encapsulated 2D‐Bi architecture effectively relieves the volume expansion and pulverization of Bi nanosheets, maintains internal 2D structure with fast kinetics, and overcome sluggish ionic/electronic diffusion obstacle of ultra‐thick, dense electrodes. The uniquely encapsulated 2D‐nanosheet structure greatly reduces K+ diffusion energy barrier and accelerates K+ diffusion kinetics. These findings validate a feasible approach to fabricate 3D dense encapsulated architectures of 2D‐alloy nanosheets with conductive elastic networks, enabling the design of ultra‐thick, dense electrodes for high‐volumetric‐energy‐density energy storage.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3