Activation of MnO6 Units via an Interfacial Electric Field: Electron Injection into Mn t2g for Rapid and Stable Sodium Ion Storage in CeO2/MnOx

Author:

Yao Shuyun1,Wang Shiyu1,Wang Jinrui1,Hou Zishan1,Gao Xueying1,Liu Yuanming1,Fu Weijie1,Nie Kaiqi2,Xie Jiangzhou3,Yang Zhiyu1,Yan Yi‐Ming1ORCID

Affiliation:

1. State Key Laboratory of Organic‐Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

2. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China

3. School of Mechanical and Manufacturing Engineering University of New South Wales Sydney NSW 2052 Australia

Abstract

AbstractManganese‐based oxides (MnOx) suffer from sluggish charge diffusion kinetics and poor cycling stability in sodium ion storage. Herein, an interfacial electric field (IEF) in CeO2/MnOx is constructed to obtain high electronic/ionic conductivity and structural stability of MnOx. The as‐designed CeO2/MnOx exhibits a remarkable capacity of 397 F g−1 and favorable cyclic stability with 92.13% capacity retention after 10,000 cycles. Soft X‐ray absorption spectroscopy and partial density of states results reveal that the electrons are substantially injected into the Mn t2g orbitals driven by the formed IEF. Correspondingly, the MnO6 units in MnOx are effectively activated, endowing the CeO2/MnOx with fast charge transfer kinetics and high sodium ion storage capacity. Moreover, In situRaman verifies a remarkably increased structural stability of CeO2/MnOx, which is attributed to the enhanced Mn─O bond strength and efficiently stabilized MnO6 units. Mechanism studies show that the downshift of Mn 3d‐band center dramatically increases the Mn 3d‐O 2p orbitals overlap, thus inhibiting the Jahn–Teller (J–T) distortion of MnOx during sodium ion insertion/extraction. This work develops an advanced strategy to achieve both fast and sustainable sodium ion storage in metal oxides‐based energy materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3