Construction of Heterojunction‐Rich Metal Nitrides Porous Nanosheets Electrocatalyst for Alkaline Water/Seawater Splitting at Large Current Density

Author:

Shen Xueran1,Li Huanjun1,Ma Tiantian1,Jiao Qingze12,Zhao Yun1,Li Hansheng1,Feng Caihong1ORCID

Affiliation:

1. Beijing Key Laboratory for Chemical Power Source and Green Catalysis School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China

2. School of Materials and Environment Beijing Institute of Technology Jinfeng Road No.6, Xiangzhou District Zhuhai 519085 P. R. China

Abstract

AbstractThe exploiting electrocatalysts for water/seawater electrolysis with remarkable activity and outstanding durability at industrial grade current density remains a huge challenge. Herein, CoMoNx and Fe‐doped CoMoNx nanosheet arrays are in‐situ grown on Ni foam, which possess plentiful holes, multilevel heterostructure, and lavish Co5.47N/MoN@NF and Fe‐Co5.47N/MoN@NF interfaces. They require low overpotentials of 213 and 296 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under alkaline media to achieve current density of 800 mA cm−2, respectively, and both possess low Tafel slopes (51.1 and 49.1 mV dec−1) and undiminished stability over 80 h. Moreover, the coupled Co5.47N/MoN@NF and Fe‐Co5.47N/MoN@NF electrolyzer requires low voltages of 1.735 V to yield 500 mA cm−2 in alkaline water. Notably, they also exhibit exceptional electrocatalytic properties in alkaline seawater (1.833 V@500 mA cm−2). The experimental studies and theoretical calculations verify that Fe doping does reduce the energy barrier from OH* to O* intermediates during OER process after catalyst reconstruction, and the non‐metallic N site from MoN exhibits the lowest theoretical overpotential. The splendid catalytic performance is attributed to the optimized local electron configuration and porous structure. This discovery provides a new design method toward low‐cost and excellent catalysts for water/seawater splitting to produce hydrogen.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3