Laser‐Printed Photoanode: Femtosecond Laser‐Induced Crystalline Phase Transformation of WO3 Nanorods for Space‐Efficient and Flexible Thin‐Film Solar Water‐Splitting Cells

Author:

Kim Hyeonwoo1,Lee Jehoon1,Kong Heejung1,Park Taeuk1,Kim Tae Sung1,Yang Haechang1,Yeo Junyeob12ORCID

Affiliation:

1. Novel Applied Nano Optics Lab Department of Physics Kyungpook National University 80 Daehak‐ro, Buk‐gu Daegu 41566 Republic of Korea

2. Department of Hydrogen & Renewable Energy Kyungpook National University 80 Daehak‐ro, Buk‐gu Daegu 41566 Republic of Korea

Abstract

AbstractDespite its potential for clean hydrogen harvesting, photoelectrochemical (PEC) water‐splitting cells face challenges in commercialization, particularly related its harvesting performance and productivity at an industrial scale. Herein, a facile fabrication method of flexible thin‐film photoanode for PEC water‐splitting to overcome these limitations, based on laser processing technologies, is proposed. Laser‐induced graphene, a carbon structure produced through direct laser writing carbonization (DLWC), plays a dual role: a flexible and stable current collector and a substrate for the hydrothermal synthesis of tungsten trioxide (WO3) nanorods (NRs). To facilitate water‐splitting, a femtosecond‐pulsed laser (fs laser) is focused on the WO3 NRs, converting their crystalline phase from pristine orthorhombic to monoclinic structure without thermal damage. With NiFe layered double hydroxide (LDH) catalyst, the flexible thin‐film photoanode exhibits good PEC performance (1.46 mA cm−2 at 1.23 VRHE) and retains ≈90% of its performance after 3000 bending cycles. With its excellent mechanical properties, the flexible photoanode can be operated in various shapes with different curvatures, enabling space‐efficient PEC water‐splitting by loading larger photoanode within a given space. This study is expected to contribute to the advancement of large‐scale solar water‐splitting cells, introducing a new approach to enhance H2/O2 production and expand its application range.

Funder

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3