Structural Heredity in Catalysis: CO2 Self‐Selective CeO2 Nanocrystals for Efficient Photothermal CO2 Hydrogenation to Methane

Author:

Zhang Kai12,Xu Cuiping1,Zhang Xingjian1,Huang Zhiyi1,Pian Qixiang1,Che Kunhong1,Cui Xiaokun1,Hu Yueru1,Xuan Yimin12ORCID

Affiliation:

1. College of Energy and Power Engineering Nanjing University of Aeronautics and Astronautics Nanjing 210016 China

2. Key Laboratory of Thermal Management and Energy Utilization of Aviation Vehicles Ministry of Industry and Information Technology Nanjing 210016 China

Abstract

AbstractThe chemical inertness of CO2 molecules makes their adsorption and activation on a catalyst surface one of the key challenges in recycling CO2 into chemical fuels. However, the traditional template synthesis and chemical modification strategies used to tackle this problem face severe structural collapse and modifier deactivation issues during the often‐needed post‐processing procedure. Herein, a CO2 self‐selective hydrothermal growth strategy is proposed for the synthesis of CeO2 octahedral nanocrystals that participate in strong physicochemical interactions with CO2 molecules. The intense affinity for CO2 molecules persists during successive high‐temperature treatments required for Ni deposition. This demonstrates the excellent structural heredity of the CO2 self‐selective CeO2 nanocrystals, which leads to an outstanding photothermal CH4 productivity exceeding 9 mmol h‐1 mcat‐2 and an impressive selectivity of >99%. The excellent performance is correlated with the abundant oxygen vacancies and hydroxyl species on the CeO2 surface, which create many frustrated Lewis‐pair active sites, and the strong interaction between Ni and CeO2 that promotes the dissociation of H2 molecules and the spillover of H atoms, thereby greatly benefitting the photothermal CO2 methanation reaction. This self‐selective hydrothermal growth strategy represents a new pathway for the development of effective catalysts for targeted chemical reactions.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3