A Metal‐Organic Framework‐Derived Strategy for Constructing Synergistic N‐Doped Carbon‐Encapsulated NiCoP@N‐C‐Based Anodes toward High‐Efficient Lithium Storage

Author:

Ou Guanrong1,Huang Mianying1,Lu Xiaomeng2,Manke Ingo3,Yang Chao2,Qian Ji4ORCID,Lin Xiaoming1,Chen Renjie4ORCID

Affiliation:

1. Key Laboratory of Theoretical Chemistry of Environment Ministry of Education School of Chemistry South China Normal University Guangzhou 510006 China

2. School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China

3. Helmholtz Centre Berlin for Materials and Energy Hahn‐Meitner‐Platz 1 14109 Berlin Germany

4. Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China

Abstract

AbstractTransition metal phosphides (TMPs) have been regarded as the prospective anodes for lithium‐ion batteries (LIBs). However, their poor intrinsic conductivity and inevitable large volume variation result in sluggish redox kinetics and the collapse of electrode structure during cycling, which substantially hinders their practical use. Herein, an effective composite electrodes design strategy of “assembly and phosphorization” is proposed to construct synergistic N‐doped carbon‐encapsulated NiCoP@N‐C‐based composites, employing a metal‐organic frameworks (MOFs) as sacrificial hosts. Serving as the anodes for LIBs, one representative P‐NCP‐NC‐600 electrode exhibits high reversible capacity (858.5 mAh g−1, 120 cycles at 0.1 A g−1) and superior long‐cycle stability (608.7 mAh g−1, 500 cycles at 1 A g−1). The impressive performances are credited to the synergistic effect between its unique composite structure, electronic properties and ideal composition, which achieve plentiful lithium storage sites and reinforce the structural architecture. By accompanying experimental investigations with theoretical calculations, a deep understanding in the lithium storage mechanism is achieved. Furthermore, it is revealed that a more ideal synergistic effect between NiCoP components and N‐doped carbon frameworks is fundamentally responsible for the realization of superb lithium storage properties. This strategy proposes certain instructive significance toward designable high‐performance TMP‐based anodes for high‐energy density LIBs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3