Synthesis of 2D Gallium Sulfide with Ultraviolet Emission by MOCVD

Author:

Maßmeyer Oliver1ORCID,Günkel Robin1ORCID,Glowatzki Johannes1,Klement Philip2ORCID,Ojaghi Dogahe Badrosadat1ORCID,Kachel Stefan Renato3ORCID,Gruber Felix1,Müller Marius2,Fey Melanie2,Schörmann Jörg2ORCID,Belz Jürgen1ORCID,Beyer Andreas1ORCID,Gottfried J. Michael3ORCID,Chatterjee Sangam2ORCID,Volz Kerstin1ORCID

Affiliation:

1. Material Sciences Center and Department of Physics Philipps‐Universität Marburg Hans‐Meerwein‐Straße 6 35043 Marburg Germany

2. Institute of Experimental Physics I and Center for Materials Research Justus Liebig University Giessen Heinrich‐Buff‐Ring 16 D‐35392 Giessen Germany

3. Material Sciences Center and Department of Chemistry Philipps‐Universität Marburg Hans‐Meerwein‐Straße 4 35043 Marburg Germany

Abstract

AbstractTwo‐dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials’ properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar‐blind photodiodes and light‐emitting diodes as applications. However, achieving commercial viability requires wafer‐scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one‐step synthesis of 2D GaS is introduced via metal–organic chemical vapor deposition on sapphire substrates. The pulsed‐mode deposition of industry‐standard precursors promotes 2D growth by inhibiting the vapor phase and on‐surface pre‐reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin‐film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3