Affiliation:
1. Department of Stomatology The First Affiliated Hospital of Soochow University 899 Pinghai Road Suzhou Jiangsu 215006 P. R. China
2. Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
3. Department of Orthopaedic Surgery The First Affiliated Hospital of Soochow University 899 Pinghai Road Suzhou Jiangsu 215006 P. R. China
Abstract
AbstractThe “double‐edged sword” effect of macrophages under the influence of different microenvironments determines the outcome and prognosis of tissue injury. Accurate and stable reprogramming macrophages (Mφ) are the key to rapid wound healing. In this study, an immunized microsphere‐engineered GelMA hydrogel membrane is constructed for oral mucosa treatment. The nanoporous poly(lactide‐co‐glycolide) (PLGA) microsphere drug delivery system combined with the photo‐cross‐linkable hydrogel is used to release the soybean lecithin (SL)and IL‐4 complexes (SL/IL‐4) sustainedly. In this way, it is realized effective wound fit, improvement of drug encapsulation, and stable triphasic release of interleukin‐4 (IL‐4). In both in vivo and in vitro experiments, it is demonstrated that the hydrogel membrane can reprogram macrophages in the microenvironment into M2Mφ anti‐inflammatory types, thereby inhibiting the local excessive inflammatory response. Meanwhile, high levels of platelet‐derived growth factor (PDGF) secreted by M2Mφ macrophages enhanced neovascular maturation by 5.7‐fold, which assisted in achieving rapid healing of oral mucosa. These findings suggest that the immuno‐engineered hydrogel membrane system can re‐modulating the biological effects of Mφ, and potentiating the maturation of neovascularization, ultimately achieving the rapid repair of mucosal tissue. This new strategy is expected to be a safe and promising immunomodulatory biomimetic material for clinical translation.
Funder
National Basic Research Program of China
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献