Thin Film Composite Membranes as a New Category of Alkaline Water Electrolysis Membranes

Author:

Choi Juyeon1,Kim Hansoo1,Jeon Sungkwon1,Shin Min Gyu1,Seo Jin Young1,Park You‐In2,Park Hosik2,Lee Albert S.3,Lee Changsoo4,Kim MinJoong4,Cho Hyun‐Seok4,Lee Jung‐Hyun1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering Korea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea

2. Center for Membranes Advanced Materials Division Korea Research Institute of Chemical Technology (KRICT) 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea

3. Materials Architecturing Research Center Korea Institute of Science and Technology (KIST) 5 Hwarang‐ro 14‐gil Seongbuk‐gu Seoul 02792 Republic of Korea

4. Hydrogen Research Department Korea Institute of Energy Research (KIER) 152 Gajeong‐ro Yuseong‐gu Daejeon 34129 Republic of Korea

Abstract

AbstractAlkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H2) production. Conventional diaphragm‐type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes. The TFC membrane consists of an ultrathin quaternary ammonium (QA) selective layer formed via Menshutkin reaction‐based interfacial polymerization on a porous polyethylene (PE) support. The dense, alkaline‐stable, and highly anion‐conductive QA layer prevents gas crossover while promoting anion transport. The PE support reinforces the mechanical and thermochemical properties, while its highly porous and thin structure reduces mass transport resistance across the TFC membrane. Consequently, the TFC membrane exhibits unprecedentedly high AWE performance (1.16 A cm−2 at 1.8 V) using nonprecious group metal electrodes with a potassium hydroxide (25 wt%) aqueous solution at 80 °C, significantly outperforming commercial and other lab‐made AWE membranes. Moreover, the TFC membrane demonstrates remarkably low gas crossover, long‐term stability, and stack cell operability, thereby ensuring its commercial viability for green H2 production. This strategy provides an advanced material platform for energy and environmental applications.

Funder

National Research Foundation of Korea

Korea Electric Power Corporation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3