Toughness Amplification via Controlled Nanostructure in Lightweight Nano‐Bouligand Materials

Author:

Patel Zainab S.1ORCID,Meza Lucas R.2ORCID

Affiliation:

1. Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA

2. Department of Mechanical Engineering University of Washington Seattle WA 98195 USA

Abstract

AbstractThe enhanced properties of nanomaterials make them attractive for advanced high‐performance materials, but their role in promoting toughness has been unclear. Fabrication challenges often prevent the proper organization of nanomaterial constituents, and inadequate testing methods have led to a poor knowledge of toughness at small scales. In this work, the individual roles of nanomaterials and nanoarchitecture on toughness are quantified by creating lightweight materials made from helicoidal polymeric nanofibers (nano‐Bouligand). Unidirectional ( = 0°) and nano‐Bouligand beams ( = 2°–90°) are fabricated using two‐photon lithography and are designed in a micro‐single edge notch bend (µ‐SENB) configuration with relative densities between 48% and 81%. Experiments demonstrate two unique toughening mechanisms. First, size‐enhanced ductility of nanoconfined polymer fibers increases specific fracture energy by 70% in the 0° unidirectional beams. Second, nanoscale stiffness heterogeneity created via inter‐layer fiber twisting impedes crack growth and improves absolute fracture energy dissipation by 48% in high‐density nano‐Bouligand materials. This demonstration of size‐enhanced ductility and nanoscale heterogeneity as coexisting toughening mechanisms reveals the capacity for nanoengineered materials to greatly improve mechanical resilience in a new generation of advanced materials.

Funder

National Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3