Evolution of Carbonate‐Intercalated γ‐NiOOH from a Molecularly Derived Nickel Sulfide (Pre)Catalyst for Efficient Water and Selective Organic Oxidation

Author:

Ghosh Suptish1,Dasgupta Basundhara1,Kalra Shweta1,Ashton Marten L. P.1,Yang Ruotao1,Kueppers Christopher J.1,Gok Sena1,Alonso Eduardo Garcia1,Schmidt Johannes2,Laun Konstantin3,Zebger Ingo3,Walter Carsten1,Driess Matthias1ORCID,Menezes Prashanth W.14ORCID

Affiliation:

1. Department of Chemistry Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17. Juni 115, Sekr. C2 10623 Berlin Germany

2. Department of Chemistry Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany

3. Department of Chemistry Physical Chemistry/Biophysical Chemistry Technische Universität Berlin Straße des 17. Juni 135, Sekr. PC14 10623 Berlin Germany

4. Materials Chemistry Group for Thin Film Catalysis – CatLab Helmholtz‐Zentrum Berlin für Materialien und Energie Albert‐Einstein‐Str. 15 12489 Berlin Germany

Abstract

AbstractThe development of a competent (pre)catalyst for the oxygen evolution reaction (OER) to produce green hydrogen is critical for a carbon‐neutral economy. In this aspect, the low‐temperature, single‐source precursor (SSP) method allows the formation of highly efficient OER electrocatalysts, with better control over their structural and electronic properties. Herein, a transition metal (TM) based chalcogenide material, nickel sulfide (NiS), is prepared from a novel molecular complex [NiII(PyHS)4][OTf]2 (1) and utilized as a (pre)catalyst for OER. The NiS (pre)catalyst requires an overpotential of only 255 mV to reach the benchmark current density of 10 mA cm−2 and shows 63 h of chronopotentiometry (CP) stability along with over 95% Faradaic efficiency in 1 m KOH. Several ex situ measurements and quasi in situ Raman spectroscopy uncover that NiS irreversibly transformed to a carbonate‐intercalated γ−NiOOH phase under the alkaline OER conditions, which serves as the actual active structure for the OER. Additionally, this in situ formed active phase successfully catalyzes the selective oxidation of alcohol, aldehyde, and amine‐based organic substrates to value‐added chemicals, with high efficiencies.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3