A 3.2 V Binary Layered Oxide Cathode for Potassium‐Ion Batteries

Author:

Jha Pawan Kumar1,Parate Shubham Kumar2,Sada Krishnakanth1,Yoshii Kazuki3,Masese Titus3,Nukala Pavan2,Sai Gautam Gopalakrishnan4ORCID,Pralong Valérie56,Fichtner Maximilian78,Barpanda Prabeer178ORCID

Affiliation:

1. Faraday Materials Laboratory (FaMaL) Materials Research Centre Indian Institute of Science Bangalore 560012 India

2. Center for Nano Science and Engineering Indian Institute of Science Bangalore 560012 India

3. Research Institute of Electrochemical Energy Department of Energy and Environment (RIECEN) National Institute of Advanced Industrial Science and Technology (AIST) 1‐8‐31 Midorigaoka Ikeda Osaka 563–8577 Japan

4. Department of Materials Engineering Indian Institute of Science Bangalore 560012 India

5. ENSICAEN UNICAEN CNRS CRISMAT Normandie University Caen 14000 France

6. Réseau sur le Stockage Electrochimique de l’Énergie (RS2E) Amiens France

7. Electrochemical Energy Storage Helmholtz Institute Ulm (HIU) 89081 Ulm Germany

8. Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) 76021 Karlsruhe Germany

Abstract

AbstractPotassium‐ion batteries (KIBs) can offer high energy density, cyclability, and operational safety while being economical due to the natural abundance of potassium. Utilizing graphite as an anode, suitable cathodes can realize full cells. Searching for potential cathodes, this work introduces P3‐type K0.5Ni1/3Mn2/3O2 layered oxide as a potential candidate synthesized by a simple solid‐state method. The material works as a 3.2 V cathode combining Ni redox at high voltage and Mn redox at low voltage and exhibits highly reversible K+ ion (de)insertion at ambient and elevated (40–50 °C) temperatures. First‐principles calculations suggest the ground state in‐plane Mn–Ni ordering in the MO2 sheets is strongly correlated to the K‐content in the framework, leading to an interwoven and alternative row ordering of Ni–Mn in K0.5Ni1/3Mn2/3O2. Postmortem and electrochemical titration reveal the occurrence of a solid solution mechanism during K+ (de)insertion. The findings suggest that the Ni addition can effectively tune the electronic and structural properties of the cathode, leading to improved electrochemical performance. This work provides new insights in the quest to develop potential low‐cost Co‐free KIB cathodes for practical applications in stationary energy storage.

Funder

Science and Engineering Research Board

Alexander von Humboldt-Stiftung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3