Affiliation:
1. Department of Chemical and Biological Engineering Advanced Materials Group The University of British Columbia 2360 E Mall Vancouver BC V6T 1Z3 Canada
2. Department of Chemical and Biological Engineering The University of British Columbia 2360 E Mall Vancouver BC V6T 1Z3 Canada
Abstract
AbstractRedox flow batteries (RFBs) are increasingly being considered for a wide range of energy storage applications, and such devices rely on proton exchange membranes (PEMs) to function. PEMs are high‐cost, petroleum‐derived polymers that often possess limited durability, variable electrochemical performance, and are linked to discharge of perfluorinated compounds. Alternative PEMs that utilize biobased materials, including lignin and sulfonated lignin (SL), low‐cost byproducts of the wood pulping process, have struggled to balance electrochemical performance with dimensional stability. Herein, SL nanoparticles are demonstrated for use as a nature‐derived, ion‐conducting PEM material. SL nanoparticles (NanoSLs) can be synthesized for increased surface area, uniformity, and miscibility compared with macrosized lignin, improving proton conductivity. After addition of polyvinyl alcohol (PVOH) as a structural backbone, membranes with the highest NanoSL concentration demonstrated an ion exchange capacity of 1.26 meq g−1, above that of the commercial PEM Nafion 112 (0.98 meq g−1), along with a conductivity of 80.4 mS cm−1 in situ, above that of many biocomposite PEMs, and a coulombic efficiency (CE), energy efficiency (EE) and voltage efficiency (VE) of 91%, 68% and 78%, respectively at 20 mA cm−2. These nanocomposite PEMs demonstrate the potential for valorization of forest biomass waste streams for high value clean energy applications.
Funder
Canada Foundation for Innovation
Natural Sciences and Engineering Research Council of Canada
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献