Affiliation:
1. Department of Chemistry and Chemical Biology Rutgers University the State University of New Jersey 123 Bevier Road Piscataway NJ 08854 USA
2. Department of Neurosurgery Robert Wood Johnson Medical School Rutgers University the State University of New Jersey 661 Hoes Ln W Piscataway NJ 08854 USA
Abstract
AbstractNanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off‐target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy‐induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology‐based approaches have emerged as promising strategies for preventing and treating chemotherapy‐induced neurotoxicity, neuropathy, and cardiomyopathy. NP‐based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy‐induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Funder
National Science Foundation
New Jersey Commission on Spinal Cord Research
Alzheimer's Association
National Heart, Lung, and Blood Institute
National Institutes of Health
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献