Affiliation:
1. State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310000 China
2. School of Materials Science and Engineering Zhejiang University Hangzhou 310000 China
Abstract
AbstractTransition metal nitrides (TMNs) are affirmed to be an appealing candidate for boosting the performance of lithium–sulfur (Li–S) batteries due to their excellent conductivity, strong interaction with sulfur species, and the effective catalytic ability for conversion of polysulfides. However, the traditional bulk TMNs are difficult to achieve large active surface area and fast transport channels for electrons/ions simultaneously. Here, a 2D ultrathin geometry of titanium nitride (TiN) is realized by a facile topochemical conversion strategy, which can not only serve as an interconnected conductive platform but also expose abundant catalytic active sites. The ultrathin TiN nanosheets are coated on a commercial separator, serving as a multifunctional interlayer in Li–S batteries for hindering the polysulfide shuttle effect by strong capture and fast conversion of polysulfides, achieving a high initial capacity of 1357 mAh g−1 at 0.1 C and demonstrating a low capacity decay of only 0.046% per cycle over 1000 cycles at 1 C.
Funder
National Natural Science Foundation of China
Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering
Fundamental Research Funds for the Central Universities
Key Research and Development Program of Zhejiang Province
Natural Science Foundation of Zhejiang Province
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献