2D Ultrathin Titanium Nitride Nanosheets as Separator Coatings for Li–S Batteries

Author:

Lu Shan1,Cai Lucheng2,Wang Jiaqian1,Ying Hangjun2,Han Zhongkang1ORCID,Han Weiqiang2ORCID,Chen Zongping1ORCID

Affiliation:

1. State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310000 China

2. School of Materials Science and Engineering Zhejiang University Hangzhou 310000 China

Abstract

AbstractTransition metal nitrides (TMNs) are affirmed to be an appealing candidate for boosting the performance of lithium–sulfur (Li–S) batteries due to their excellent conductivity, strong interaction with sulfur species, and the effective catalytic ability for conversion of polysulfides. However, the traditional bulk TMNs are difficult to achieve large active surface area and fast transport channels for electrons/ions simultaneously. Here, a 2D ultrathin geometry of titanium nitride (TiN) is realized by a facile topochemical conversion strategy, which can not only serve as an interconnected conductive platform but also expose abundant catalytic active sites. The ultrathin TiN nanosheets are coated on a commercial separator, serving as a multifunctional interlayer in Li–S batteries for hindering the polysulfide shuttle effect by strong capture and fast conversion of polysulfides, achieving a high initial capacity of 1357 mAh g−1 at 0.1 C and demonstrating a low capacity decay of only 0.046% per cycle over 1000 cycles at 1 C.

Funder

National Natural Science Foundation of China

Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering

Fundamental Research Funds for the Central Universities

Key Research and Development Program of Zhejiang Province

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3