Achieving High‐Performance Electrocatalytic Water Oxidation on Ni(OH)2 with Optimized Intermediate Binding Energy Enabled by S‐Doping and CeO2‐Interfacing

Author:

Chen Xiang12,Xu Xinyue1,Cheng Yuwen1,Liu He1,Li Dongdong1,Da Yumin2,Li Yongtao1,Liu Dongming1,Chen Wei23ORCID

Affiliation:

1. School of Materials Science and Engineering Anhui University of Technology Maanshan 243002 P. R. China

2. Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore

3. Department of Physics National University of Singapore 2 Science Drive 3 Singapore 117542 Singapore

Abstract

AbstractThe adsorption energy of the reaction intermediates has a crucial influence on the electrocatalytic activity. Ni‐based materials possess high oxygen evolution reaction (OER) performance in alkaline, however too strong binding of *OH and high energy barrier of the rate‐determining step (RDS) severely limit their OER activity. Herein, a facile strategy is shown to fabricate novel vertical nanorod‐like arrays hybrid structure with the interface contact of S‐doped Ni(OH)2 and CeO2 in situ grown on Ni foam (S‐Ni(OH)2/CeO2/NF) through a one‐pot route. The alcohol molecules oxidation reaction experiments and theoretical calculations demonstrate that S‐doping and CeO2‐interfacing significantly modulate the binding energies of OER intermediates toward optimal value and reduce the energy barrier of the RDS, contributing to remarkable OER activity for S‐Ni(OH)2/CeO2/NF with an ultralow overpotential of 196 mV at 10 mA cm−2 and long‐term durability over 150 h for the OER. This work offers an efficient doping and interfacing strategy to tune the binding energy of the OER intermediates for obtaining high‐performance electrocatalysts.

Funder

Scientific Research Foundation of Education Department of Anhui Province of China

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

National Research Foundation Singapore

Agency for Science, Technology and Research

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3