Tethering Cobalt Ions to BiVO4 Surface via Robust Organic Bifunctional Linker for Efficient Photoelectrochemical Water Splitting

Author:

Jahangir Tahir Naveed1,Ahmed Tauqir2,Ullah Nisar13,Kandiel Tarek A.14ORCID

Affiliation:

1. Department of Chemistry King Fahd University of Petroleum & Minerals (KFUPM) Dhahran 31261 Saudi Arabia

2. Center for Specialty Chemicals Korea Research Institute of Chemical Technology Ulsan 44412 Republic of Korea

3. Interdisciplinary Research Center for Refining and Advanced Chemicals King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia

4. Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC‐HTCM) at KFUPM Dhahran 31261 Saudi Arabia

Abstract

AbstractIn the quest for efficient and stable oxygen evolution catalysts (OECs) for photoelectrochemical water splitting, the surface modification of BiVO4 is a crucial step. In this study, a novel and robust OEC, based on 3‐(bis(pyridin‐2‐ylmethyl) amino) propanoic acid bifunctional linker known as dipicolyl alanine acid (DPAA) and cobalt ions, is prepared and fully characterized. The DPAA is anchored to the surface of BiVO4 and utilized to tether cobalt ions. The Co‐DPAA/BiVO4 photoanode exhibits remarkable stability and efficiency toward photoelectrochemical water oxidation. Specifically, it showed anodic photocurrent increase of 7.1, 5.0, 3.0, and 1.3‐fold at 1.23 VRHE as compared to pristine BiVO4, DPAA/BiVO4, Co‐BiVO4, and Co‐Pi/BiVO4 photoanodes, respectively. The photoelectrochemical and IMPS studies revealed that the Co‐DPAA/BiVO4 photoanode exhibits a longer transient decay time for surface‐trapped holes, higher charge transfer kinetics, and charge separation efficiency compared to Co‐Pi/BiVO4 and pristine BiVO4 photoelectrodes. This indicates that the Co‐DPAA effectively reduces surface recombination and facilitates charge transfer. Moreover, at 1.23 VRHE, the Co‐DPAA/BiVO4 photoanode achieved a faradic efficiency of 92% for oxygen evolution reaction and could retain a turnover frequency of 3.65 s−1. The exhibited efficiency is higher than most of the efficient molecular oxygen evolution catalysts based on Ru.

Funder

Deanship of Scientific Research, King Saud University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3