Affiliation:
1. School of Materials Science and Physics China University of Mining and Technology Xuzhou 221116 P. R. China
2. SVOLT No. 2199 Chaoyang South Street Baoding City Hebei Province 071000 P. R. China
Abstract
AbstractPrussian blue analogues (PBAs) exhibiting hollow morphologies have garnered considerable attention owing to their remarkable electrochemical properties. In this study, a one‐pot strategy is proposed for the synthesis of MnFe PBA open cages. The materials are subsequently employed as cathode electrode in sodium‐ion batteries (SIBs). The simultaneous evolution of structure, morphology, and performance during the synthesis process is investigated. The findings reveal substantial structural modifications as the reaction time is prolonged. The manganese content in the samples diminishes considerably, while the potassium content experiences an increase. This compositional variation is accompanied by a significant change in the spin state of the transition metal ions. These structural transformations trigger the occurrence of the Kirkendall effect and Oswald ripening, culminating in a profound alteration of the morphology of MnFe PBA. Moreover, the shifts in spin states give rise to distinct changes in their charge–discharge profiles and redox potentials. Furthermore, an exploration of the formation conditions of the samples and their variations before and after cycling is conducted. This study offers valuable insights into the intricate relationship between the structure, morphology, and electrochemical performance of MnFe PBA, paving the way for further optimizations in this promising class of materials for energy storage applications.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献