Engineering Interfacial Pt─O─Ti Site at Atomic Step Defect for Efficient Hydrogen Evolution Catalysis

Author:

Wang Lei1,Mao Zhelin1,Mao Xin2,Sun Hai1,Guo Panjie1,Huang Run1,Han Chao1,Hu Ximiao1,Du Aijun2,Wang Xin1ORCID

Affiliation:

1. College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 P. R. China

2. School of Chemistry Physics and Mechanical Engineering Queensland University of Technology Brisbane Queensland 4000 Australia

Abstract

AbstractThe hydrogen evolution reaction (HER) activity of defect‐stabilized low‐Pt‐loading catalysts is closely related with defect type in support materials, while the knowledge about the effect of higher‐dimensional defects on the property and activity of trapped Pt atomic species is scarce. Herein, small size (5–10 nm) TiO2 nanoparticles with abundant surface step defects (one kind of line defect) are used to direct the uniform anchoring of Pt atomic clusters (Pt‐ACs) via Pt─O─Ti linkage. The as‐made low‐Pt catalysts (Pt‐ACs/S‐TiO2‐NP) exhibit exceptional HER intrinsic activity due to the unique step‐site Pi‐O‐Ti species, in which the mass activity and turnover frequency are as high as 21.46 A mg Pt−1 and 21.69 s−1 at the overpotential of 50 mV, both far beyond those of benchmark Pt/C catalysts and other Pt‐ACs/TiO2 samples with less step sites. Spectroscopic measurements and theoretical calculations reveal that the step‐defect‐located Pt─O─Ti sites can simultaneously induce the charge transfer from TiO2 substrate to the trapped Pt‐ACs and the downshift of d‐band center, which helps the proton reduction to H* intermediates and the following hydrogen desorption process, thus improving the HER. The work provides a deep insight on the interactions between high‐dimensional defect and well‐dispersed atomic metal motifs for superior HER catalysis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3