Theoretically Designed Cu10Sn3‐Cu‐SnOx as Three‐Component Electrocatalyst for Efficient and Tunable CO2 Reduction to Syngas

Author:

Woldu Abebe R.1ORCID,Harrath Karim2,Huang Zanling1,Wang Xiaoming1,Huang Xiao‐Chun13,Astruc Didier4,Hu Liangsheng13ORCID

Affiliation:

1. Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Guangdong 515063 P. R. China

2. Department of Chemistry Southern University of Science and Technology Shenzhen 518055 P. R. China

3. Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515063 P. R. China

4. ISM UMR CNRS 5255 University of Bordeaux Talence Cedex 33405 France

Abstract

AbstractElectrocatalytic transformation of CO2 to various syngas compositions is an exceedingly attractive approach to carbon‐neutral recycling. Meanwhile, the achievement of selectivity, stability, and tunability of product ratios using single‐component electrocatalysts is challenging. Herein, the theoretically‐assisted design of the triple‐component nanocomposite electrocatalyst Cu10Sn3‐Cu‐SnOx that addresses this challenge is presented. It is shown that Cu10Sn3 is a valuable electrocatalyst for suitable CO2 reduction to CO, SnO2 for CO2 reduction to formate at large overpotentials, and that the Cu–SnO2 interface facilitates H2 evolution. Accordingly, the interaction between the three functional components affords tunable CO/H2 ratios, from 1:2 to 2:1, of the produced syngas by controlling the applied potentials and relative contents of functional components. The syngas generation is selective (Faradaic efficiency, FE = 100%) at relatively lower cathodic potentials, whereas formate is the only liquid product detected at relatively higher cathodic potentials. The theoretically guided design approach therefore provides a new opportunity to boost the selectivity and stability of CO2 reduction to tunable syngas.

Funder

Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province

Université de Bordeaux

Centre National de la Recherche Scientifique

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3