In Situ Growth of Iron Sulfide on Fast Charge Transfer V2C‐MXene for Superior Sodium Storage Anodes

Author:

Xiong Zhihao1,Shi Haofeng1,Zhang Wenyuan1,Yan Jingtao1,Wu Jun1,Wang Chengdeng1,Wang Donghua1,Wang Jiashuai1,Gu Yousong1,Chen Fu‐Rong2,Yang Yongzhen34,Xu Bingshe34,Yan Xiaoqin1ORCID

Affiliation:

1. State Key Laboratory for Advanced Metals and Materials School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China

2. Department of Materials Science and Engineering City University of Hong Kong Hong Kong 999077 China

3. Key Laboratory of Interface Science and Engineeringin Advanced Materials Taiyuan University of Technology Taiyuan Shanxi 030024 China

4. Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering Taiyuan Shanxi 030032 China

Abstract

AbstractDue to the upstream pressure of lithium resources, low‐cost sodium‐ion batteries (SIBs) have become the most potential candidates for energy storage systems in the new era. However, anode materials of SIBs have always been a major problem in their development. To address this, V2C/Fe7S8@C composites with hierarchical structures prepared via an in situ synthesis method are proposed here. The 2D V2C‐MXene as the growth substrate for Fe7S8 greatly improves the rate capability of SIBs, and the carbon layer on the surface provides a guarantee for charge–discharge stability. Unexpectedly, the V2C/Fe7S8@C anode achieves satisfactory sodium storage capacity and exceptional rate performance (389.7 mAh g−1 at 5 A g−1). The sodium storage mechanism and origin of composites are thoroughly studied via ex situ characterization techniques and first‐principles calculations. Furthermore, the constructed sodium‐ion capacitor assembled with N‐doped porous carbon delivers excellent energy density (135 Wh kg−1) and power density (11 kW kg−1), showing certain practical value. This work provides an advanced system of sodium storage anode materials and broadens the possibility of MXene‐based materials in the energy storage.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3